Page 205 - ADVANCED MATH F.5
P. 205

Form Five                                                            Form Five


               2                                         2
                                      23
          28.                  29. ln( )             30.
                                      5
              15                                         3
          31. 1                32.  6                33. 1
         FOR ONLINE READING ONLY
              3                    40                   (ln 2 ) 2
          34.                  35.                   36.
              2                     3                      4
              3π               38. 3 4ln 2+
          37.     + 1                                39. 9
               8
              1                    e 5  1 −          42.  2ln 2 2ln3−
          40.                  41.
              6                      2
               3                                         1    7
          43.                  44. 12ln3 8−          45.   −
              10                                        36 36e 6
              26      59             ln 2 ln 3−      48. 3ln3 5ln 2−
          46.    ln 2 −        47.  −
               3      18                 2
              33                   203               51. 0
          49.                  50.
                8                  480
               2                   2                 54. π
          52.                  53.
              35                   15
              5                    π                     1
                                                               1
                                                              −
          55.                  56.                   57.   (tan ( ) −  π )
                                                                 3
              2                    4                     2       2    4
              4                    π                                  − 1 1
                   −
          58.   tan ( )        59.                   60. 6 4 2 7sin ( )−  −  3
                    1 1
              3       3            4
          Applications of integration
          The area under a curve and the area enclosed between two curves
          Teaching steps
             1.  Guide students through a jigsaw to describe the area under a
                 curve and the area enclosed between two curves. Encourage
                 students to explore additional resources, such as online
                 tutorials or reference books, to enrich their understanding and
                 for further practice.


                                  199
                                             Mathematics for Advanced Secondary Schools



                                                                        30/06/2024   18:02:53
   ADVANCED MATH F.5 TG CHAPTERS.indd   199
   ADVANCED MATH F.5 TG CHAPTERS.indd   199                             30/06/2024   18:02:53
   200   201   202   203   204   205   206   207   208   209   210