Page 49 - ADVANCED MATH F.5
P. 49

Form Five                                                            Form Five


          Answers to Exercise 3.6

                                                          x
                                                       2
                  2
          1.  (a)  x +  y + 7x − 5y + 16 0=      (d)  x +  y − + 4y − 53 0=
                      2
                                                  2
                                                       2
                                                  2
             (b) x +  y − 4x + 4y − 17 0=       (e)  x +  y + 4x − 3y =
                      2
                                                                    0
                  2
         FOR ONLINE READING ONLY
                  2
                      2
                          x
             (c) x +  y ++   2y − 30=
                      2
                                                   2
                  2
          2.  (a)  x +  y − 6x + 4y − 12 0=        (d)  x +  y −  2  10x −  8y + 16 0=
                                                       2
                  2
                      2
                                                  2
             (b) x +  y − +  4y − 12 0=          (e)  x +  y − 13x + 3y +=
                                                                    2 0
                          x
                      2
                  2
             (c) x +  y − 14x + 10y − 95 0=
          3.  x +  2  y −  2  10x −  10y +  24 0=  4. C C       13 1  , ,  3        , r =  92   units
                                                      2 2 2 12      2
          5.   x +  2  y −  2  2x +  2y −  23 0=
          7.  (a) C( 4, 8)−         (b)  r =  4 10 units    (c)  x +  2  y −  2  8x −  16y −  80 0=

          9. 8x +  2  8y −  2  46x −  35y −  202 0=
          Equation of tangent and normal to a circle
          Teaching steps
             1.  Use Figure 3.9 in the  Student’s Book to  assist students  in
                 describing the line which is tangent to a circle given the end
                 points of a diameter. Guide students through discussion to
                 derive the formula for the equation of a tangent to a circle at
                 the where it touches the circle.
             2.  Use Figure  3.10 in  the  Student’s Book to  assist students  in
                 describing a line which is  tangent to a circle. Guide them
                 through discussion to derive the equation of a line which is
                 normal to a circle at the point of contact with the circle.
             3.  Design an activity  which will  engage  students to share
                 alternative  methods  for the  derivation  of the  equation  of



                                   43
                                             Mathematics for Advanced Secondary Schools



                                                                        30/06/2024   18:01:52
   ADVANCED MATH F.5 TG CHAPTERS.indd   43                              30/06/2024   18:01:52
   ADVANCED MATH F.5 TG CHAPTERS.indd   43
   44   45   46   47   48   49   50   51   52   53   54