Page 166 - ADVANCED MATH F.5
P. 166

Form Five                                                                                                                                          Form Five


             3.  Use Examples  8.39 to 8.45 in the  Student’s Book to guide
                 students and assist them in finding derivatives of logarithmic
                 functions.  Engage  students to  use  mathematical  software  to
                 verify the solutions of the given problems.
         FOR ONLINE READING ONLY
             4.  Require students to attempt  Exercise  8.11 in the Student’s
                 Book. Advise them to submit their work; check the correctness
                 of their answers, and provide them constructive feedback.



          Answers to Exercise 8.11
                          5
            1.  (a)   y′ =                       (b)  y′ =  ln x                   (c)   y′ =  2sin(ln )x
                        5x − 4

                          2                     2x      3x 2
            2.  y′ =                   3.    y′ =    +
                    (x + 3)(x + 5)             x + 3   x + 2
                                                2
                                                        3
                              1                       4     6
                     ′
            4.  (a)   fx =                (b)   fx =    −
                      ()
                                                ′
                                                ()
                             1 x+  2                  x   3x − 5
                                  x
                     ′
                      ( )
                (c)   fx = (sin x ) [ln(sin )x + x cot  ] x
                (d)   fx     6x   −  12x 2
                     ′
                      () =
                            2 x+  2  1 x−  3
                                        2
                                    +
            5.  (a)   y′ = (sin x ) tan x (1 sec x lnsec  ) x
                                                           2
                          2x                            2x −  4
                (b)  y′ =      − 7cosec2x      (c) y′ =
                                                           2
                        x +  3                           ( xx −  ) 4
                          2
                (d)  y′ =  x x (1 ln )x+
                        2cosec2x
                 ′
            6.  fx =                          7.   2sec2θ
                  ()
                         ln tan x
                       3                   dy   1
            11.  y′ =      2          12.     =
                      ( 4 ln 2 )           dx   2

                                                 160
         Mathematics for Advanced Secondary Schools



                                                                        30/06/2024   18:02:40
   ADVANCED MATH F.5 TG CHAPTERS.indd   160
   ADVANCED MATH F.5 TG CHAPTERS.indd   160                             30/06/2024   18:02:40
   161   162   163   164   165   166   167   168   169   170   171