Page 163 - ADVANCED MATH F.5
P. 163
Form Five Form Five
1
(k)
1 cos x+
(l) − sin x + cos x + 1 sin ⎛ ⎜ 1 sin x− ⎞ ⎟
FOR ONLINE READING ONLY
(1 cos )x+ 2 ⎝ 1 cos x+ ⎠
2
2. (a) 2π − (b) 4
θ cos (θ 2 − ) 1
cos x sin x
5. − 7.
2
x x 2 (θ − ) 1
y 2 sin ( x y+ 2 ) 3x− 2
10. (a) − (b)
3
2xy − 2sin 2y 4y − 2 siny ( x y+ 2 )
2sec x
2
2
(c) sec x (d)
(1 tan x− ) 2
Derivatives of inverse trigonometric functions
Teaching steps
1. Guide students through discussion to identify inverse
trigonometric functions of sine, cosine, tangent, secant,
cosecant, and cotangent with their units in radians.
2. Use Activity 8.3 in the Student’s Book to engage students in
recognizing derivatives of inverse trigonometric functions.
3. Use Examples 8.27 to 8.32 in the Student’s Book to
guide students through discussion to differentiate inverse
trigonometric functions. Allow students to share alternative
methods of differentiating inverse trigonometric functions.
Engage students to use mathematical software to verify the
solutions of the examples.
157
Mathematics for Advanced Secondary Schools
30/06/2024 18:02:39
ADVANCED MATH F.5 TG CHAPTERS.indd 157 30/06/2024 18:02:39
ADVANCED MATH F.5 TG CHAPTERS.indd 157