Page 174 - ADVANCED MATH F.5
P. 174

Form Five                                                                                                                                          Form Five


             3.  Guide students through discussion to deduce that Maclaurin’s
                 series is a special case of Taylor’s series when  a = 0.
             4.  Use Examples 8.74 and 8.75 in the Student’s Book to guide
                 students to apply Maclaurin’s series to find solutions of the
            9.  1− FOR ONLINE READING ONLY
                 given problems.

             5.  Assign students to attempt Exercise 8.18 in the Student’s Book.
                 Advise students to submit their work; check the correctness of
                 their answers, and provide them constructive feedback.


          Answers to Exercise 8.18

                4  3    2  2   1  3
            2.   5  +  5  x −  5  x −  10  x +  


                              64                                  1      1
                                                                      x
            3.  (a)    4x −  8x +  2  x −  3  64x +  4           4.    − <<
                               3                                  2      2
                       1   π  2  5    π     4
               (b)  1+    x −    +    x −    +  
                       2    2   24   2 

               (c)   2 −  2 x +      π    +  3     x +  π     2  −  11     x +  π     3  +  19     x +  π       4  +  
                             4   2   4   3 2   4   4 2   4 

                    1    3   1      1       1
               (d)   −    x −  x +  2  x +  3  x +  4  
                    2   2    4     4 3     48
                       1     1
            5.  (a)  1−  x +  2  x +  4            (d)  1 2x+  −  2x +  2  4x −  3  10x +  4  
                      2!     4!
                       1
               (b)   x −  x +  3  
                       3!           2          3          4
                  (c)   1+  (ln a x +  )  (ln a )  x +  2  (ln a )  x +  3  (ln a )  x +  4  
                                  2         6          24
                        16     128                    3   9      9
            6.  14θ  −  2  θ +  4  θ −  6  +        7.  1+  x +  x +  2  x +  3  
                         3      45                    2   8     16
                   1  h +  2  1  h +  4  
                   2     24

                                                 168
         Mathematics for Advanced Secondary Schools



                                                                        30/06/2024   18:02:43
   ADVANCED MATH F.5 TG CHAPTERS.indd   168                             30/06/2024   18:02:43
   ADVANCED MATH F.5 TG CHAPTERS.indd   168
   169   170   171   172   173   174   175   176   177   178   179