Page 185 - ADVANCED MATH F.5
P. 185

Form Five                                                            Form Five



                                                      3
          15.   1  x −  5  x −  2  2x +  3 2  c  16. t − t − t ++
                                                  4
                                                          2
                                                             tc
              5
                 x
                    c
          17. 11e +                           18.    y 2  −  2  +  c
         FOR ONLINE READING ONLY
                                                   2   y
                                                  1
          19. 2sinθ – 2cosθ + c               22.    x −  3  1  x −  2  3  x − 2 3  +  1  +  c
                                                  3      2     2      x
              4                                         5     2
          20.  sin xc+                        23.  ln t +  t +  4  +  c
              3                                         4     t 2
                   7     3                          1   1    3r 2
          21.   x +  4  x −  3  sin xc+       24.   −+     +     + c
                   3     2                          r  3r 3   2


          Techniques of integration
          Introduce students to common techniques for integration. Assist them
          in  identifying the  most  common  techniques  of integration  which
          include integration  by substitution, by inspection,  by parts, and by
          partial fractions.

          Integration by substitution method

          Teaching steps
             1.  Guide students to discuss the steps for integrating a given
                 function  by the substitution method  in the Student’s Book.
                 Assist them  in using the  substitution  method  to integrate
                 integrals of the form:                            dx
                                                               
                     ∫
                 (a)  (ax b dx±  ) n  (b)   ∫  m (ax b dx±  ) n     (c)   ⌠  ax b±
                                                               ⌡
                                         ∫
                     ∫
                 (d)  sin(ax b dx±  )    (e)   e ax b±  dx , where a and b and constants.
             2.  Use Examples 9.8  to 9.11 in the student’s Book, to guide
                 students to find solutions of the integrals by the substitution
                 method. Engage students to use scientific calculators and
                 mathematical softwares to verify the answers of the given


                                  179
                                             Mathematics for Advanced Secondary Schools



                                                                        30/06/2024   18:02:47
   ADVANCED MATH F.5 TG CHAPTERS.indd   179                             30/06/2024   18:02:47
   ADVANCED MATH F.5 TG CHAPTERS.indd   179
   180   181   182   183   184   185   186   187   188   189   190