Page 199 - ADVANCED MATH F.5
P. 199
Form Five Form Five
1 1 cos x
θ
22. tan 1 tan + c 23. ln + c
2 4 3 cos x − 3
θ
tan + 1
FOR ONLINE READING ONLY
2
x
24. ln + c 25. 2 tan − 1 1 tan + c
θ
tan + 3 3 3 3
2
2sin x − 4 − 1
1) c
26. ln + c 27. tan (tan x ++
2sin x − 2
10 3 x
θ
28. θ tan − 1 3 tan + c 29. ln tan( ) 2+ 2 + c
−+
3 2
3
30. sin x 1 sin x+ − 1 3 (1 sin )x+ 2 + 1 sin xc+ +
Integration by splitting the numerator
Teaching steps
1. Guide students through discussion to recognize integrals
whose integrand is;
(a) A rational function with a quadratic denominator that
cannot be factorized.
(b) A rational function with trigonometric functions in both
the numerator and denominator.
2. Assist students through discussion to solve integrals of the
form:
±
⌠
(a) ax b+ dx (b) ⌠ a cos xb sin x dx
⌡ cx + 2 dx e+ ⌡ p cos x q± sin x
a cos xb± ⌠ sin x c+ ⌠ a cos xb± sin x
(c) dx (d) dx
⌡ p cos x q± sin x ⌡ p cos x q± sin x r+
where a, b, c, d, e, p, q and r are constants.
193
Mathematics for Advanced Secondary Schools
30/06/2024 18:02:51
ADVANCED MATH F.5 TG CHAPTERS.indd 193 30/06/2024 18:02:51
ADVANCED MATH F.5 TG CHAPTERS.indd 193