Page 111 - Mathematics
P. 111

− 3                                                  1
                                                                    5
               x ≥                 (i)                      (d) 2x −≤
                    2                                                   2
               Squaring both sides of the given             (e)   x  −  1  <  1
                                                                       2
                                                                2
                                                                   2
               inequality gives,                            (f) 6x +  42≥
                   (  2x +  3 ) 2  <  3 2                           3        1                   Tanzania Institute of Education
                                                            (g)  4x −  4  >  2x +  4
                             39
                                2x +<
                                      2x <  6           3.  Find the solution for each of the

                                        x < 3                (ii)  following inequalities.
               Combining the two solutions (i) and          (a)      y >  2
                          3                                 (b)     2 y−−  ≤ 1
               (ii) gives  −  ≤<  3.
                              x
                          2                                 (c)     y ≤
                                                                       3
               Therefore, the solution of the               (d)      y <  5

                             3                                         2
                                 x
               inequality is  −  ≤<  3.                     (e)     y +  2 >  2
                             2
                                                        4.  Represent the solution of each
               Exercise 5.8
                                                            of the following on a number
                                                            line.
               1.   List the numbers which satisfy          (a)     x−  4 ≤  5

                   each of the following conditions.
                   (a)  x <  if  x is a counting            (b)     x > 2.5
                           6
                       number.                              (c)      7 x−  >  0
                           4
                   (b)  x ≤  if  x is a whole                       2
                       number.                              (d)       −  3  x −  4 <  2
                   (c)  x >  if  x  is an odd                              8
                           3
                       number.                              (e)      4x −  2 ≥
                   (d)  x >−  and  x ≤  if  x is            (f)       1  −  x >  3
                                       4
                             3
                       an integer.                                2
               2.  Solve for x in each of the           5.  Find the solution of the
                   following inequalities.                  following inequalities.

                   (a) 5x > 12                                    (a) 2(2x +  3) 10 6(x−  <  −  2)        Mathematics Form One
                   (b) 4 x− < 10                                  2x + 3       4x
                                                                        62 +
                   (c)  2 −> 8                              (b)       +≥
                          x
                                                                  4             3

                                                 105




                                                                                        25/10/2024   09:51:38
   Mathematics form 1.indd   105
   Mathematics form 1.indd   105                                                        25/10/2024   09:51:38
   106   107   108   109   110   111   112   113   114   115   116