Page 111 - Mathematics
P. 111
− 3 1
5
x ≥ (i) (d) 2x −≤
2 2
Squaring both sides of the given (e) x − 1 < 1
2
2
2
inequality gives, (f) 6x + 42≥
( 2x + 3 ) 2 < 3 2 3 1 Tanzania Institute of Education
(g) 4x − 4 > 2x + 4
39
2x +<
2x < 6 3. Find the solution for each of the
x < 3 (ii) following inequalities.
Combining the two solutions (i) and (a) y > 2
3 (b) 2 y−− ≤ 1
(ii) gives − ≤< 3.
x
2 (c) y ≤
3
Therefore, the solution of the (d) y < 5
3 2
x
inequality is − ≤< 3. (e) y + 2 > 2
2
4. Represent the solution of each
Exercise 5.8
of the following on a number
line.
1. List the numbers which satisfy (a) x− 4 ≤ 5
each of the following conditions.
(a) x < if x is a counting (b) x > 2.5
6
number. (c) 7 x− > 0
4
(b) x ≤ if x is a whole 2
number. (d) − 3 x − 4 < 2
(c) x > if x is an odd 8
3
number. (e) 4x − 2 ≥
(d) x >− and x ≤ if x is (f) 1 − x > 3
4
3
an integer. 2
2. Solve for x in each of the 5. Find the solution of the
following inequalities. following inequalities.
(a) 5x > 12 (a) 2(2x + 3) 10 6(x− < − 2) Mathematics Form One
(b) 4 x− < 10 2x + 3 4x
62 +
(c) 2 −> 8 (b) +≥
x
4 3
105
25/10/2024 09:51:38
Mathematics form 1.indd 105
Mathematics form 1.indd 105 25/10/2024 09:51:38