Page 107 - ADVANCED MATH F.5
P. 107

Form Five                                                            Form Five


             2.  Use Examples  5.53 to 5.56 in the  Student’s Book to guide
                 students on how to obtain expansions of the given expressions.
                 Engage  students to use mathematical  software to verify  the
                 given expansion for the given examples.
              n FOR ONLINE READING ONLY
             3.  Instruct students to attempt Exercise 5.9 in the student’s Book.
                 Advise students to submit their work, check the correctness of
                 their answers, and provide them constructive feedback.

          Answers to Exercise 5.9

                                                            4
          1.  (a)  32x +  5  240xz +  4  720x z +  32  1080xz +  23  810xz  + 243 z 5
             (b)   a −  7  7a b +  6  21a b −  5 2  35a b +  43  35a b −  34  21a b +  25  7ab −  6  b 7

                                           +
             (c) 32x +  5  160x +  3  320x +  320 160  +  32
                                        x    x 3   x 5
          2.  (a) 140 2        (b) 24476        (c) 40 2    (d) 98 .
          3.  1 10x+  +  55x +  2  210x +  3   ; 1.106

          4.   (a) 1.0743      (b) 1 279.2      (c)   7272.2
          5.  m =  −  9 and n =  46

          7.   32 80y+  +  80y +  2  40y +  3  10y +  4  y 5 ; 32.08008
          8.  1 024 1280y+  +  720y +  2  240 ; 1159y 3

          9.  4 28c−  +  85c −  2  146c +  3  155c +  4  
                            27        3       1
          10. 81a −  4  54a b +  3  a b −  22  ab +  3  b 4 ; 757335.0625
                             2        2      16

          Binomial expansion for fractional and negative indices

          Teaching steps
             1.  Guide  students  in  groups  to  discuss  the  modified  binomial
                 theorem when n is negative or a fraction, the modified binomial
                 theorem is given by,
                  1  n    ( nn −  ) 1  ( nn −  1 )(n −  1 )(n −  ) 2  ( nn −  1 )(n −  2 )(n −  ) 3
          (1 x+  ) =  +  x +    x +  2               x +  3                x +  4  
                 0! 1!      2!              3!                   4!
                                  101
                                             Mathematics for Advanced Secondary Schools



                                                                        30/06/2024   18:02:22
   ADVANCED MATH F.5 TG CHAPTERS.indd   101                             30/06/2024   18:02:22
   ADVANCED MATH F.5 TG CHAPTERS.indd   101
   102   103   104   105   106   107   108   109   110   111   112