Page 188 - Physics
P. 188

Physics for Secondary Schools


           Total  area  under the  curve  = area  of a   But the term in brackets is displacement,
           trapezium                                  s  (i.e., from the second equation of
                                                      motion). Therefore,
                                  1
             Areaof trapezium      sum of paralell sides   height  2  u   2  2as
                                                                       v 
                                  2
              1                                       This is the third equation of motion.
 Areaof trapezium  sum of paralell sides  height
              2
                                                      Alternatively,  from  the  defi nition  of
                  1
             A     OA BC    OC                  distance moved,
                  2                                                   vu 
                  1                                                    s       t 
             A     uv   t                                       2 
                  2
                                                      From the fi rst equation of motion, t can
           From the fi rst equation, v   at          be found as:
                                      u
                 v  u                                                   vu
                                                                   
              t                                              t 
                   a                                               a
                  1             vu   
              A    uv         
                  2             a                   Substitution gives

                   1      vu    1   vu                       vu      v u   
                                                                          
                    u          v                              s        
                    2     a     2    a                          2      a 
                                                                          
                                                                              
                   uv u  2  v   2  uv                             v   2  vu vu u 2
                      
                                   but A = s                       s 
                     2a        2a                                        2a
              2as v  2    u  2                                    2as v  2    u 2
                                                                   v   2  u   2  2as
           Therefore, v   2  u   2  2as


           The third equation  of the linear  motion          Example 8.7
           can also be derived algebraically  by          A car starts from rest and
           combining  the  fi rst  two  equations  and     accelerates uniformly at the rate
           eliminating  t.  Using  the  fi rst  equation   of 2 m/s  for 6 s. It then maintains
                                                                  2
            v u at  , square both sides of the          a constant speed for 30 seconds.
           equation to get:                               After the brakes are applied, it
                                                          decelerates uniformly to rest in 5
                             v   2  u   2  2uat a t  22  s. Calculate:

           Factorise 2a on the right-hand side to get:    (a)  the total distance covered in

                                      1                        metres.
                            v   2  u   2  2( a ut   at 2 )  (b)  the maximum speed reached.
                                      2


             182
                                                                         Student’s Book Form One



     Physics Form 1 Final.indd   182                                                        16/10/2024   20:58
   183   184   185   186   187   188   189   190   191   192   193