Page 101 - Mathematics
P. 101
1
Substitute b = into equation (ii) 17
3 7x − 4y =
to obtain the value of a. 5. 5x − 4y = 11
From a + 6b = 1. It implies that, 6. 0.7x − 0.5y = 2.5
1 0.7x + 0.3y = 2.9 Tanzania Institute of Education
a + 6 = 1. 0
3 7. 2x y+=
2
a += 1. x − 2y = − 5
a = − 1 4 + 1 = 3
1 1 8. x y
But, a = and b = . It follows 1 2
x y + = − 1
1 1 1 x y
that, 1− = and = .
x 3 y 8 12 = − 2
−
Solving for the values of x and y 9. x y
gives, 5 + 3 = 1
x = − 1 and y = 3. x 2y
3
Therefore, x = − and y = is 0.2x + 0.3y = 0.1
1
the solution of the simultaneous 10. 0.3x − 0.1y = 0.7
equation.
0.05x + 0.02y = 0.01
Exercise 5.5 11. 0.02x − 0.03y = − 0.11
Solve the following simultaneous 1 x + 3y = 3
equations by using elimination 12. 2
method. 3 x − 2y = − 2
y
2x += 5 4
1.
4x y−= 7 u + 2v = 1
13.
3pq+ = 6 3u − 4v = 8
2.
5pq+ = 8 2pq+ = 4
5x − 2y = 16 14. − 3p + 5q = − 19
3.
x + 2y = 8 1 n = 3 Mathematics Form One
8x + 5y = 40 15. 2m + 3
4. − 3mn+= 6
9x − 5y = 5
95
25/10/2024 09:51:32
Mathematics form 1.indd 95 25/10/2024 09:51:32
Mathematics form 1.indd 95