Page 139 - Mathematics
P. 139
y − 3 = − 2
x + 4
Cross multiplication gives,
y −= − 2(x + 4) Tanzania Institute of Education
3
3
y −= − 2x − 8
y = − 2x − 83+
y = − 2x − 5
Therefore, the equation of the straight line is y = − 2x − 5.
Example 6.10
Find the equation of a straight line which passes through the points A (3, 7)
and B (–2, –3).
Solution
Using the formula for finding an equation of a straight line,
y y− 1 = y − 2 y 1
xx− x − x
1 2 1
Let ( , ) (3, 7)xy = and ( ,xy ) ( 2, 3).= − − Substitute these values into the
1 1 2 2
equation as follows:
37
y − 7 = −−
23
x − 3 −−
Simplification gives,
y − 7 = − 10
x − 3 − 5
y − 7 = 2
Mathematics Form One
x − 3
Cross multiply and rearrange to get, y = 2x + 1.
Therefore, the equation of the line passing through the given points is y = 2x + 1.
133
25/10/2024 09:51:50
Mathematics form 1.indd 133
Mathematics form 1.indd 133 25/10/2024 09:51:50