Page 137 - Mathematics
P. 137

Equation of a straight line
                                                          )
            Suppose that two points  P( , )xy  and  Q( ,xy  lie on a straight line, then the
                                           1
                                                      2
                                                         2
                                        1
            relationship between x and y coordinates of a point  N( , )xy lying on  PQ  can be
            determined. If  x ≠  x 2 , then point N will join PQ  to form a straight line only if the
                            1
            gradient of line PN is the same as the gradient of line PQ as shown in Figure 6.5.   Tanzania Institute of Education
                               y


                               y
                                                                  N(x, y)



                               y
                                2
                                                       Q(x , y )
                                                           2  2

                               y
                                1
                                            P(x , y )
                                                1  1




                               0           x 1        x         x       x
                                                       2

                         Figure 6.5: A straight line joining points P, Q, and N

                                  y −  y
            The gradient of  PQ =  2   1  =  m                                                     (1)
                                  x −  x 1
                                   2
                                  y y−
            The gradient of PN =      1  = m                                                       (2)
                                  xx−  1

            Equations (1) and (2) gives the same results.


                                                       ( −
            From equation (2), it implies that  y −  y =  1  mx  x 1 ). Making y the subject gives
                                 ( −
                           y =  mx   x 1 ) +  y 1
            Further simplification gives  y =  mx mx−  1  +  1 . y

            Rearrangement gives y mx=   +  (y −  1  mx 1 ).                                        Mathematics Form One
            Let  c =  y − mx 1 , it follows that y =  mx +  (y −  1  mx 1 )  is simplified to
                     1
                                   y = mx c+                        (3)




                                                 131




                                                                                        25/10/2024   09:51:49
   Mathematics form 1.indd   131
   Mathematics form 1.indd   131                                                        25/10/2024   09:51:49
   132   133   134   135   136   137   138   139   140   141   142